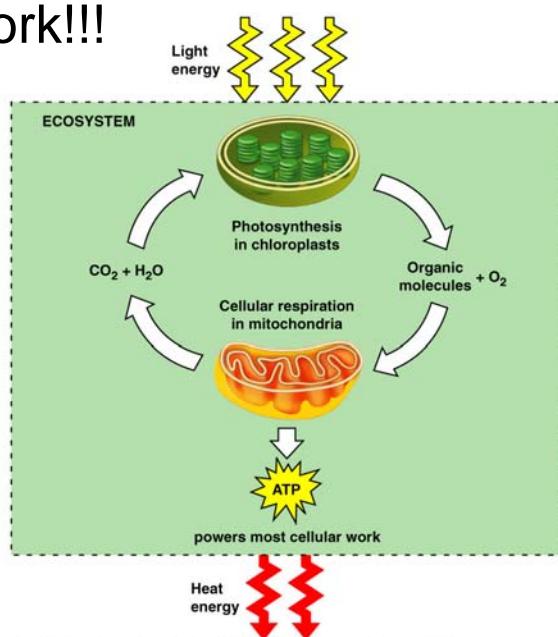


Chapter 9


Harvesting Chemical Energy: Cellular Respiration

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

W
CJC
Biology – Kevin Dees

Life is Work!!!

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

W
CJC
Biology – Kevin Dees

Catabolic pathways and ATP production

- Catabolic pathways release energy by breaking down large molecules into smaller ones
- The energy is potential energy in the form of the chemical bonds which hold these large molecules together
- This energy is used phosphorylate ADP to make ATP (and it also generates some heat)

Two basic catabolic paths:

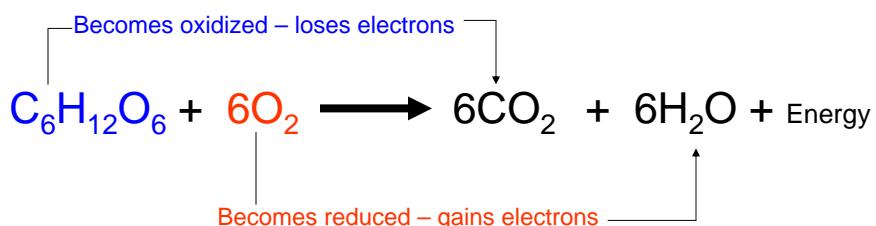
- Cellular respiration
 - A.K.A – aerobic respiration
 - Requires oxygen
 - Occurs in mitochondria of most eukaryotic cells
- Fermentation
 - Occurs without oxygen
 - Less efficient than aerobic cellular respiration
 - Makes fewer ATPs

Recall that the process to phosphorylate ADP (add a phosphate) to make ATP requires energy

- This energy comes from the catabolism of organic fuels
 - Glucose
 - Lipids
 - Proteins
 - Etc...
- The key to understanding how this energy is transferred is related to the understanding of oxidation-reduction reactions

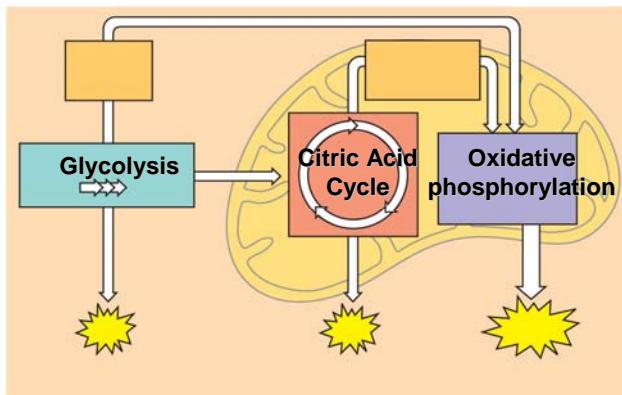
–Redox reactions

Redox reactions


- Involve the transfer of electrons
- The loss of electrons
 - Called oxidation
- The gain of electrons
 - Called reduction

Is similar to ionic bonds, but do not confuse the two!!!!

- As these electrons are transferred from one substance to another, energy is transferred as well.
- Recall that electrons have energy!!!!
- Think of these electrons as moving packets of energy as they *oxidize* substances they leave and *reduce* substances which gain them.
 - Oxidized substances lose energy
 - Reduced substances gain energy


Aerobic cellular respiration

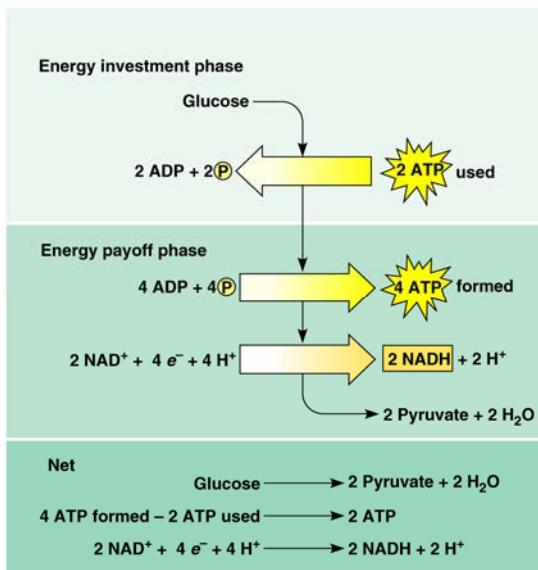
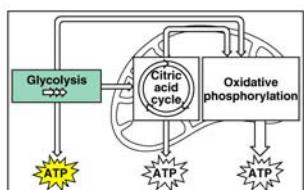
- **Know this reaction:**

There are three stages to aerobic cellular respiration

1. Glycolysis
2. Citric Acid Cycle
3. Oxidative phosphorylation: e- transport and chemiosmosis

W
CJC
Biology – Kevin Dees

1. Glycolysis



- “splitting sugar”
- Glucose – $C_6H_{12}O_6$
 - How many carbons??
 - HINT: These reactions are much simpler if you keep track of the carbons!!!
 - Remember – glucose is going to be catabolized and oxidized- the carbons will be split apart!!!!
 - Keep track of them!!!!
- Occurs in the cytoplasm

W
CJC
Biology – Kevin Dees

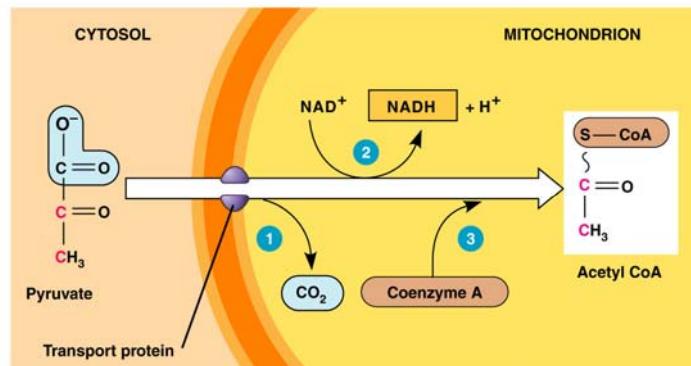
Two phases of glycolysis

- Energy investment phase-
 - Requires 2 ATPs
 - Glucose is split and the and oxidized
- Energy payoff phase
 - Produces 4 ATPs
 - Produces 2 NADH from NAD+
 - Nicotinamide adenine dinucleotide
 - NADH is reduced form – gained electrons with H atom
 - NADH in this reduced form is an energy carrier!!!!
 - Produces 2 molecules of pyruvate – three carbon acid

W
CJC Biology – Kevin Dees

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

W
CJC Biology – Kevin Dees

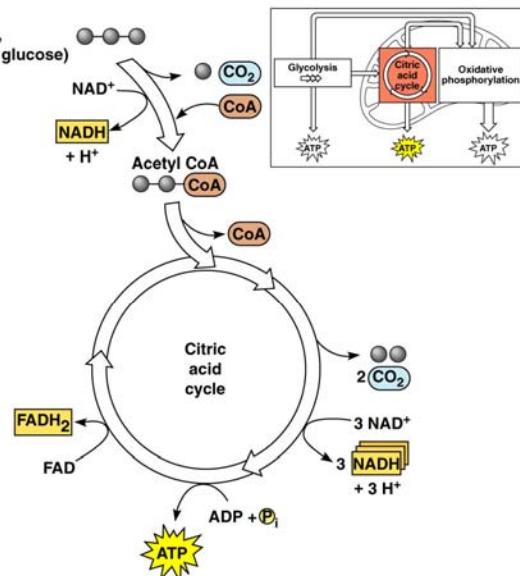

So...in summary

- One molecule of glucose proceeds through glycolysis and we get:
 - A net of 2 ATPs (but recall we made 4 ATPs)
 - 2 NADH – reduced NAD+ (energy carriers)
 - 2 Pyruvate (3 C each – still six carbons right??)
 - Glycolysis does not require oxygen!
 - Occurs in the cytoplasm of the cell!

2. Citric Acid Cycle

- Also known as the Krebs Cycle
 - Hans Krebs – scientist who mapped pathway in 1930s
- After glycolysis, we still have a lot of energy remaining in what was our glucose molecule.
 - Where is it??
 - Pyruvate (2) (3 C each)
 - NADH (2)
- If there is oxygen present, pyruvate enters the mitochondrion

- Pyruvate (3 C each) from glycolysis enters the mitochondrion
 - If oxygen is present
- Using Coenzyme A, each pyruvate is converted into a molecule of Acetyl CoA (2 C)
 - What happened to the other carbon from each molecule of pyruvate?
 - CO_2 released
 - NAD^+ is reduced to form NADH



Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Biology – Kevin Dees

- For each Acetyl CoA which enters the citric acid cycle:
 - 2 CO_2 are produced
 - Catabolism of glucose now complete
 - 3 NADH are produced
 - 1 FADH_2 is produced
 - 1 ATP is produced

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Biology – Kevin Dees

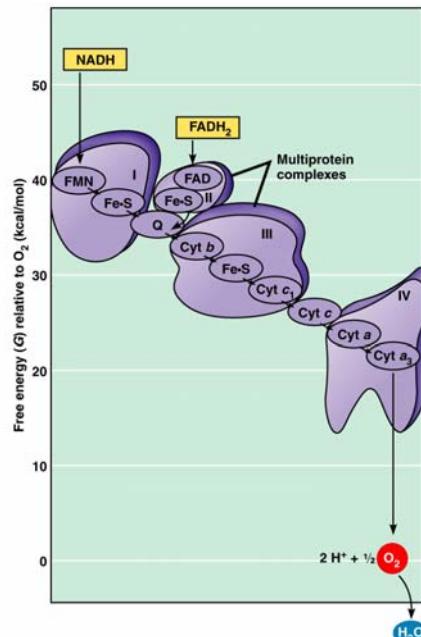
So, let's review what has happened up to this point

- Glycolysis – 1 glucose molecule
 - Net gain of 2 ATP
 - Total produced – 4 ATP
 - 2 NADH
 - 2 Pyruvate
- Citric Acid Cycle
 - Each pyruvate converted into Acetyl CoA
 - CO_2 produced
 - NADH produced
 - Each Acetyl CoA “spins the citric acid wheel”
 - 2 CO_2 produced
 - 3 NADH produced
 - 1 FADH_2 produced
 - 1 ATP produced
 - Glucose is catabolized
- Net production from catabolism of 1 glucose:
 - 4 ATP
 - 10 NADH
 - 2 FADH_2
 - 6 CO_2 produced

WHERE is all of the energy????

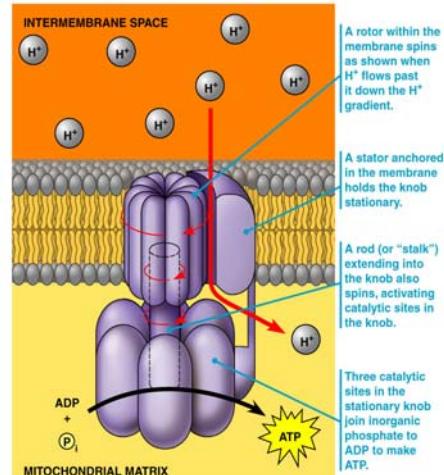
 WJC Biology – Kevin Dees

Most of the energy is tied up in the energy carrier molecules


- NADH and FADH_2
- These energy carrier molecules are routed to the cristae of the mitochondria
- The cristae membrane is the site of **oxidative phosphorylation**
 - Two steps to oxidative phosphorylation
 - Electron transport
 - Chemiosmosis

 WJC Biology – Kevin Dees

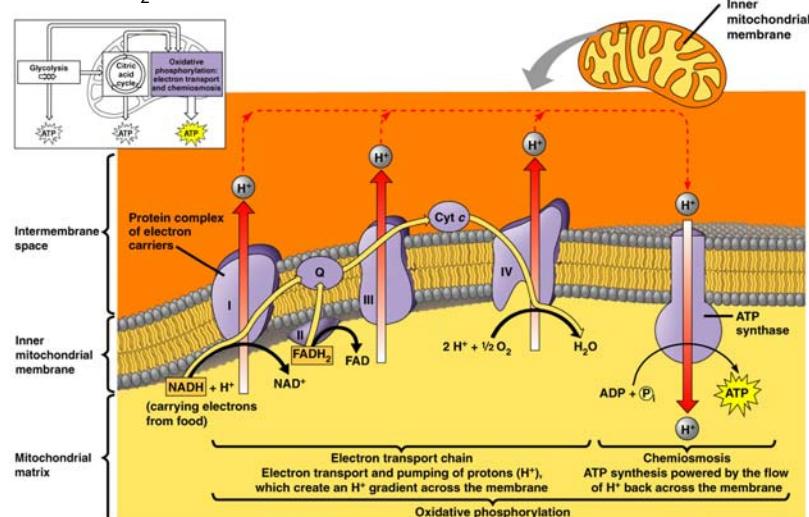
Complexes of proteins are located on the cristae – recall it was highly folded right??


- **electron transport chain**
- The NADH and FADH_2 are oxidized once again as they lose their electrons
- These electrons “fall” down an energy gradient on the electron transport chain
- This forces H^+ (protons) into the intermembrane space

- Electrons fall down the energy gradient on the electron transport chain
- Oxidizing and reducing along the way
- Final electron acceptor:
 - OXYGEN
 - Makes water molecule

Chemiosmosis

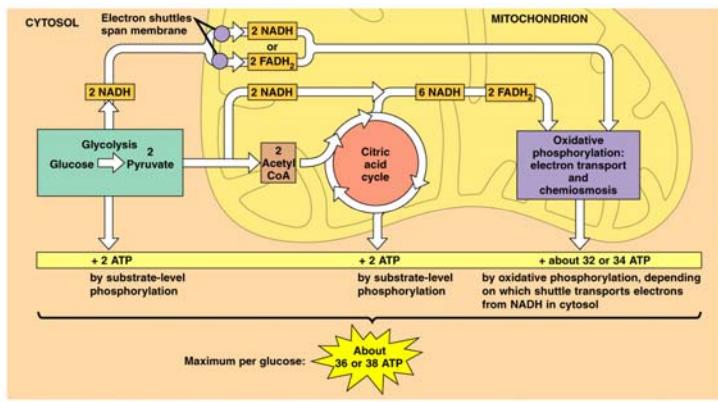
- Recall that H^+ were forced into the intermembrane space; high concentration of H^+
- ATP synthase proteins are also located on the cristae
- These H^+ form an energy gradient along the membrane and as they pass through ATP synthase the energy released is used to phosphorylate ADP to make **ATP**


Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

W
CJC
Biology – Kevin Dees

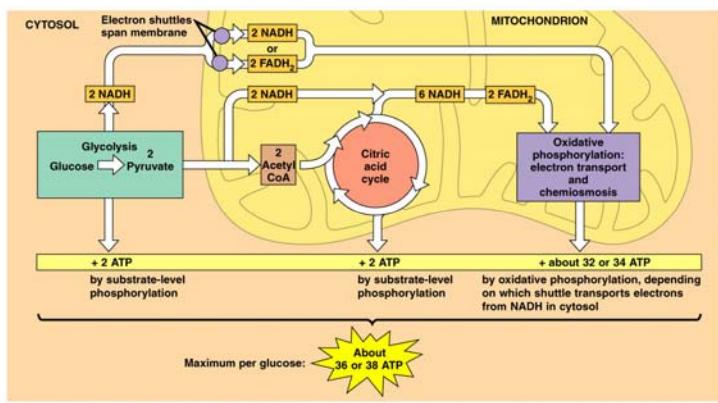
Oxidative phosphorylation – a review

- 10 NADH
- 2 FADH₂


Net production of 32 -34 ATP

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

W
CJC
Biology – Kevin Dees

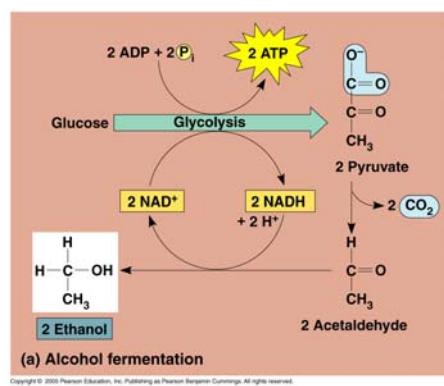

A review of cellular respiration

- For each glucose which enters the process, a net yield of 36 to 38 ATP occurs

W
CJC
Biology – Kevin Dees

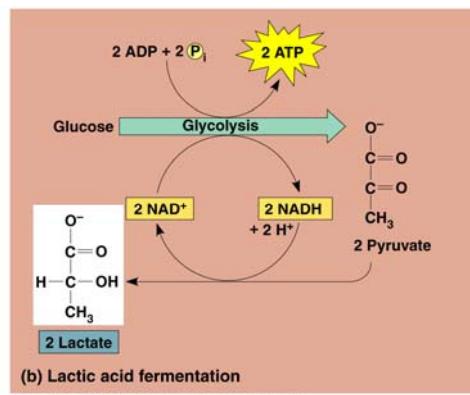
Why is oxygen required??

- Final electron acceptor (final reduced substance)*


W
CJC
Biology – Kevin Dees

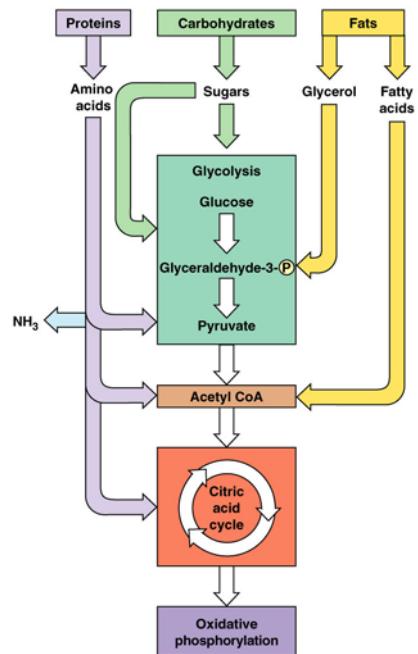
What if oxygen is not present??

- Fermentation can occur
- ATP production is limited to glycolysis
 - Net gain of 2 ATP per glucose
 - Pyruvate must be converted – not stable


Alcohol fermentation

- Many bacteria and yeasts under anaerobic conditions
 - Pyruvate is converted into ethanol
 - Important in brewing, winemaking and baking

Lactic acid fermentation


- Human muscle cells
 - Occurs during strenuous exercise when sugar catabolism for ATP production outpaces muscle's supply of oxygen in blood
 - Achy muscles!!!

W
CJC
Biology – Kevin Dees

Simple sugars like glucose are not the only catabolized molecules

Each different organic macromolecule can enter the pathway at different steps

W
CJC
Biology – Kevin Dees